Growth Functions as a tool to model SARS-CoV-2 pandemic trajectory and related-deaths worldwide

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The international scientific community from different areas of knowledge has made efforts to provide information and methods that contribute to the adoption of the most appropriate measures to curb the spread of the COVID-19 disease. In particular, the data analysis community has been very active in publishing a large number of papers. A good part of them is related to the prediction of epidemic variables (number of cases and deaths) in different time horizons. To solve the problem of the prediction of COVID-19, an important place is occupied by the sigmoidal growth functions, as they have often been used successfully in previous epidemic outbreaks. The objective of this work was to investigate, on a statistical basis, the ability of classical growth functions to model the data from the COVID-19 pandemic. But for that, it was necessary to establish a clear classification of the 5 types of problems that can be faced with data analysis techniques in this specific context and to define a methodology based on quantitative metrics to measure the performance in solving these different types of problems. The basic concept used was that of an epidemic wave consisting of an initial-increasing and a final-decreasing phase. A classification of the COVID-19 waves in 4 types was done based on mining data from all available countries. Thus, it was possible to determine the resolvability of each type of problem depending on the stage of the epidemic wave. The biggest conclusion was the impossibility of solving the long-term forecasting problems (problem 5 – to estimate the total value of an epidemic wave) with data from the first phase only. Using this theoretical-methodological framework, we evaluated, using metrics specifically designed for these types of problems, the performance of 3 classic growth functions: Logistics, Gompertz and Richards (a generalization of the previous two) in 2 types of problems: (1) Description of the trajectory of the epidemic and (2) Prediction of the total numbers of cases and deaths. We used data from 10 countries, 7 of them with more than 100 daily deaths on the peak day. The results show a generalized underperformance of the logistic function in all aspects and place the Gompertz function as the best cost-benefit alternative, as it has performance comparable to the Richards function, but it has one less parameter to be adjusted, in the process of regression of the model to the observed data.

Article activity feed

  1. SciScore for 10.1101/2021.04.01.21254495: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.