Neutralization of European, South African, and United States SARS-CoV-2 mutants by a human antibody and antibody domains

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) transmission with several emerging variants remain uncontrolled in many countries, indicating the pandemic remains severe. Recent studies showed reduction of neutralization against these emerging SARS-CoV-2 variants by vaccine-elicited antibodies. Among those emerging SARS-CoV-2 variants, a panel of amino acid mutations was characterized including those in the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) glycoprotein. In the present study, we evaluated our previously identified antibody and antibody domains for binding to these RBD variants with the emerging mutations, and neutralization of pseudo typed viruses carrying spike proteins with such mutations. Our results showed that one previously identified antibody domain, ab6, can bind 32 out of 35 RBD mutants tested in an ELISA assay. All three antibodies and antibody domains can neutralize pseudo typed B.1.1.7 (UK variant), but only the antibody domain ab6 can neutralize the pseudo typed virus with the triple mutation (K417N, E484K, N501Y). This domain and its improvements have potential for therapy of infections caused by SARS-CoV-2 mutants.

Article activity feed

  1. SciScore for 10.1101/2021.03.22.436481: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.
    Cell Line Authenticationnot detected.

    Table 2: Resources

    Experimental Models: Cell Lines
    SentencesResources
    2 Pseudovirus Neutralization Assay: PSV was generated in 293T cells by co-transfection of pFC37K-CMV-S, an enhanced expression plasmid encoding for codon-optimized full-length SARS-CoV-2 S with the N-term HiBit tag removed, and pNL4-3.luc.R-E-mCherry-luciferase, an envelope deficient HIV-1 dual reporter construct that was cloned by recombination of the pNL.luc.R-E-plasmid (NIH AIDS Reagent Program) and the fully infectious pNL4-3 mCherry luciferase plasmid (Addgene) [24, 25].
    293T
    suggested: None
    For neutralization assays 104 293T-hACE2 cells were plated in 100uL media per well in 96 well white-wall white-bottom plates (Perkin Elmer) and incubated overnight at 37°C.
    293T-hACE2
    suggested: None
    Software and Algorithms
    SentencesResources
    ([Agonist] vs. response---variable slope-four parameters), and the Area Under Curve (AUC) were calculated using GraphPad Prism 9.0.2.
    GraphPad Prism
    suggested: (GraphPad Prism, RRID:SCR_002798)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.