The effect of mobility restrictions on the SARS-CoV-2 diffusion during the first wave: what are the impacts in Sweden, USA, France and Colombia

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Combined with sanitation and social distancing measures, control of human mobility has quickly been targeted as a major leverage to contain the spread of SARS-CoV-2 in a great majority of countries worldwide. The extent to which such measures were successful, however, is uncertain (Gibbs et al. 2020; Kraemer et al. 2020). Very few studies are quantifying the relation between mobility, lockdown strategies and the diffusion of the virus in different countries. Using the anonymised data collected by one of the major social media platforms (Facebook) combined with spatial and temporal Covid-19 data, the objective of this research is to understand how mobility patterns and SARS-CoV-2 diffusion during the first wave are connected in four different countries: the west coast of the USA, Colombia, Sweden and France. Our analyses suggest a relatively modest impact of lockdown on the spread of the virus at the national scale. Despite a varying impact of lockdown on mobility reduction in these countries (83% in France and Colombia, 55% in USA, 10% in Sweden), no country successfully implemented control measures to stem the spread of the virus. As observed in Hubei (Chinazzi et al. 2020), it is likely that the virus had already spread very widely prior to lockdown; the number of affected administrative units in all countries was already very high at the time of lockdown despite the low testing levels. The second conclusion is that the integration of mobility data considerably improved the epidemiological model (as revealed by the QAIC). If inter-individual contact is a fundamental element in the study of the spread of infectious diseases, it is also the case at the level of administrative units. However, this relational dimension is little understood beyond the individual scale mostly due to the lack of mobility data at this scale. Fortunately, these types of data are getting increasingly provided by social media or mobile operators, and they can be used to help administrations to observe changes in movement patterns and/or to better locate where to implement disease control measures such as vaccination (Pollina & Busvine 2020; Pullano et al. 2020; Romm et al. 2020).

Article activity feed

  1. SciScore for 10.1101/2021.02.01.21250935: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    The QAIC function from the MuMIn R package was used (Barton & Barton, 2015).
    MuMIn
    suggested: None

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.