An all-solid-state heterojunction oxide transistor for the rapid detection of biomolecules and SARS-CoV-2 spike S1 protein

This article has been Reviewed by the following groups

Read the full article

Abstract

Solid-state transistor sensors that can detect biomolecules in real time are highly attractive for emerging bioanalytical applications. However, combining cost-effective manufacturing with high sensitivity, specificity and fast sensing response, remains challenging. Here we develop low-temperature solution-processed In 2 O 3 /ZnO heterojunction transistors featuring a geometrically engineered tri-channel architecture for rapid real-time detection of different biomolecules. The sensor combines a high electron mobility channel, attributed to the quasi-two-dimensional electron gas (q2DEG) at the buried In 2 O 3 /ZnO heterointerface, in close proximity to a sensing surface featuring tethered analyte receptors. The unusual tri-channel design enables strong coupling between the buried q2DEG and the minute electronic perturbations occurring during receptor-analyte interactions allowing for robust, real-time detection of biomolecules down to attomolar (aM) concentrations. By functionalizing the tri-channel surface with SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) antibody receptors, we demonstrate real-time detection of the SARS-CoV-2 spike S1 protein down to attomolar concentrations in under two minutes.

Article activity feed

  1. SciScore for 10.1101/2021.01.19.427256: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Antibodies
    SentencesResources
    SARS-CoV-2 spike S1 antibody (40150-R007), SARS-CoV-2 (2019-nCoV) Spike S1-His Recombinant Protein (40591-V08B1), MERS-CoV Spike/S1 Protein (S1 Subunit, aa 1-725, His Tag) (40069-V08H) were purchased from Sino Biological (China).
    40069-V08H
    suggested: None

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on pages 5 and 7. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.