Advances in Photonic Gas Sensors Operating in the VIS–NIR Spectrum: Structures, Materials, and Performance

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The growing need for real-time, accurate monitoring of hazardous gases in environmental, industrial, and healthcare settings has highlighted the limitations of traditional sensing methods. Photonic Integrated Circuits (PICs) have become a revolutionary platform due to their high sensitivity, accurate selectivity, compact size and cost-effectiveness. We present in this work a comprehensive overview of the best-reported PIC-based gas sensors. We discuss the basic concepts behind resonance-based and absorption-based sensing. A detailed overview of the various material platforms, from well-known silicon and silicon nitride to new polymers, chalcogenide glasses, and 2D materials, is presented. A comparison of key device topologies, such as waveguides, microring resonators, Mach-Zehnder interferometers, and metasurfaces, is conducted, with performance benchmarks indicating the limit of detection (LoD). The main limitations of PIC sensors are discussed in this review. We also discuss promising technologies, especially the game-changing potential of artificial intelligence to create fully autonomous devices.

Article activity feed