Timeliness of provisional United States mortality data releases during the COVID-19 pandemic: delays associated with electronic death registration system and weekly mortality

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

All-cause mortality counts allow public health authorities to identify populations experiencing excess deaths from pandemics, natural disasters, and other emergencies. Delays in the completeness of mortality counts may contribute to misinformation because death counts take weeks to become accurate. We estimate the timeliness of all-cause mortality releases during the Covid-19 pandemic for the dates 3 April to 5 September 2020 by estimating the number of weekly data releases of the NCHS Fluview Mortality Surveillance System until mortality comes within 99% of the counts in the 19 March 19 2021 provisional mortality data release. States’ mortality counts take 5 weeks at median (interquartile range 4--7 weeks) to completion. The fastest states were Maine, New Hampshire, Vermont, New York, Utah, Idaho, and Hawaii. States that had not adopted the electronic death registration system (EDRS) were 4.8 weeks slower to achieve complete mortality counts, and each weekly death per 10^8 was associated with a 0.8 week delay. Emergency planning should improve the timeliness of mortality data by improving state vital statistics digital infrastructure.

Article activity feed

  1. SciScore for 10.1101/2021.01.07.21249401: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.