Predicting Trends of Coronavirus Disease (COVID-19) Using SIRD and Gaussian-SIRD Models
This article has been Reviewed by the following groups
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
- Evaluated articles (ScreenIT)
Abstract
Eruption of COVID-19 patients in 215 countries worldwide have urged for robust predictive methods that can detect as early as possible size and duration of the contagious disease and also providing precision predictions. In many recent literatures reported on COVID-19, one or more essential parts of such investigation were missed. One of crucial elements for any predictive method is that such methods should fit simultaneously as many data as possible; these data could be total infected cases, daily hospitalized cases, cumulative recovered cases and deceased cases and so on. Other crucial elements include sensitivity and precision of such predictive methods on amount of data as the contagious disease evolved day by day. To show importance of these aspects, we have evaluated the standard SIRD model and a newly introduced Gaussian-SIRD model on development of COVID-19 in Kuwait. It is observed that SIRD model quickly pick up main trends of COVID-19 development; but Gaussian-SIRD model provides precise prediction at longer period of time.
Article activity feed
-
SciScore for 10.1101/2020.11.29.20240499: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources MATLAB algorithm (lsqcurvefit) [14] was applied to find best coefficients in SIRD model equations (1-5). MATLABsuggested: (MATLAB, RRID:SCR_001622)Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did …
SciScore for 10.1101/2020.11.29.20240499: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources MATLAB algorithm (lsqcurvefit) [14] was applied to find best coefficients in SIRD model equations (1-5). MATLABsuggested: (MATLAB, RRID:SCR_001622)Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-
