Sensitivity Analysis on Predictive Capability of SIRD Model for Coronavirus Disease (COVID-19)

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

SIR model is one of the simplest methods used in prediction of endemic/pandemic outbreaks. We examined SIRD model for development of COVID-19 in Kuwait which was started on 24 February 2020 by 5 patients in Kuwait. This paper investigates sensitivity of SIRD model for development of COVID-19 in Kuwait based on duration of progressed days of data. For Kuwait, we have fitted SIRD model to COVID-19 data for 20, 40, 60, 80, 100, and 116 days of data and assessed sensitivity of the model with number of days of data. The parameters of SIRD model are obtained using an optimization algorithm (lsqcurvefit) in MATLAB. The total population of 50,000 is equally applied for all Kuwait time intervals. Results of SIRD model indicates that after 40 days the peak infectious day can be adequately predicted; althogh, error percentage from sensetivity analysis indicates that different exposed population sizes are not correctly predicted. SIRD type models are too simple to robustly capture all features of COVID-19 and more precise methods are needed to tackle nonlinear dynamics of a pandemic.

Article activity feed

  1. SciScore for 10.1101/2020.11.21.20236083: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    The transmission rate β, the recovery rate γR, and the death rate γD are unknown SIR model parameters that are obtained by fitting COVID-19 data using the curve-fitting optimization algorithm (lsqcurvefit) in MATLAB.
    MATLAB
    suggested: (MATLAB, RRID:SCR_001622)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.