Detection of COVID-19 Disease from Chest X-Ray Images: A Deep Transfer Learning Framework

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

World economy as well as public health have been facing a devastating effect caused by the disease termed as Coronavirus (COVID-19). A significant step of COVID-19 affected patient’s treatment is the faster and accurate detection of the disease which is the motivation of this study. In this paper, implementation of a deep transfer learning-based framework using a pre-trained network (ResNet-50) for detecting COVID-19 from the chest X-rays was done. Our dataset consists of 2905 chest X-ray images of three categories: COVID-19 affected (219 cases), Viral Pneumonia affected (1345 cases), and Normal Chest X-rays (1341 cases). The implemented neural network demonstrates significant performance in classifying the cases with an overall accuracy of 96%. Most importantly, the model has shown a significantly good performance over the current research-based methods in detecting the COVID-19 cases in the test dataset (Precision = 1.00, Recall = 1.00, F1-score = 1.00 and Specificity = 1.00). Therefore, our proposed approach can be adapted as a reliable method for faster and accurate COVID-19 affected case detection.

Article activity feed

  1. SciScore for 10.1101/2020.11.08.20227819: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    ResNet models, having up to 150+ layers, have solved this issue using identity shortcut connections – they’re connections that skip one or more layers.
    ResNet
    suggested: (RESNET, RRID:SCR_002121)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.