An analysis of clinical and geographical metadata of over 75,000 records in the GISAID COVID-19 database
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
During the SARS-CoV-2 outbreak that caused the coronavirus pandemic it is important now more than ever that scientists and public health officials work side-by-side and use their available resources to track patient information from those that have been affected by the novel coronavirus. The ability to track the disease helps identify possible trends and patterns that can be used by public health officials to make more informed decisions. Tracking data like this may be the key to helping states and countries safely re-open. However, when analyzing large collections of data there is the occurrence of confounding factors such as biases in patient sampling. In this project, a massive collection of COVID-19 data was analyzed, and explored potential biases in patient sampling were explored.
Article activity feed
-
SciScore for 10.1101/2020.09.22.20199497: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
Software and Algorithms Sentences Resources 2.2 Reading the collection of data: Python was used to load the contents of the gzipped file and create a dictionary to hold the patient records. Pythonsuggested: (IPython, RRID:SCR_001658)Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not …SciScore for 10.1101/2020.09.22.20199497: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
Software and Algorithms Sentences Resources 2.2 Reading the collection of data: Python was used to load the contents of the gzipped file and create a dictionary to hold the patient records. Pythonsuggested: (IPython, RRID:SCR_001658)Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-