Prior diagnoses and medications as risk factors for COVID-19 in a Los Angeles Health System

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

With the continuing coronavirus disease 2019 (COVID-19) pandemic coupled with phased reopening, it is critical to identify risk factors associated with susceptibility and severity of disease in a diverse population to help shape government policies, guide clinical decision making, and prioritize future COVID-19 research. In this retrospective case-control study, we used de-identified electronic health records (EHR) from the University of California Los Angeles (UCLA) Health System between March 9 th , 2020 and June 14 th , 2020 to identify risk factors for COVID-19 susceptibility (severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) PCR test positive), inpatient admission, and severe outcomes (treatment in an intensive care unit or intubation). Of the 26,602 individuals tested by PCR for SARS-CoV-2, 992 were COVID-19 positive (3.7% of Tested), 220 were admitted in the hospital (22% of COVID-19 positive), and 77 had a severe outcome (35% of Inpatient). Consistent with previous studies, males and individuals older than 65 years old had increased risk of inpatient admission. Notably, individuals self-identifying as Hispanic or Latino constituted an increasing percentage of COVID-19 patients as disease severity escalated, comprising 24% of those testing positive, but 40% of those with a severe outcome, a disparity that remained after correcting for medical co-morbidities. Cardiovascular disease, hypertension, and renal disease were premorbid risk factors present before SARS-CoV-2 PCR testing associated with COVID-19 susceptibility. Less well-established risk factors for COVID-19 susceptibility included pre-existing dementia (odds ratio (OR) 5.2 [3.2-8.3], p=2.6 × 10 −10 ), mental health conditions (depression OR 2.1 [1.6-2.8], p=1.1 × 10 −6 ) and vitamin D deficiency (OR 1.8 [1.4-2.2], p=5.7 × 10 −6 ). Renal diseases including end-stage renal disease and anemia due to chronic renal disease were the predominant premorbid risk factors for COVID-19 inpatient admission. Other less established risk factors for COVID-19 inpatient admission included previous renal transplant (OR 9.7 [2.8-39], p=3.2×10 −4 ) and disorders of the immune system (OR 6.0 [2.3, 16], p=2.7×10 −4 ). Prior use of oral steroid medications was associated with decreased COVID-19 positive testing risk (OR 0.61 [0.45, 0.81], p=4.3×10 −4 ), but increased inpatient admission risk (OR 4.5 [2.3, 8.9], p=1.8×10 −5 ). We did not observe that prior use of angiotensin converting enzyme inhibitors or angiotensin receptor blockers increased the risk of testing positive for SARS-CoV-2, being admitted to the hospital, or having a severe outcome. This study involving direct EHR extraction identified known and less well-established demographics, and prior diagnoses and medications as risk factors for COVID-19 susceptibility and inpatient admission. Knowledge of these risk factors including marked ethnic disparities observed in disease severity should guide government policies, identify at-risk populations, inform clinical decision making, and prioritize future COVID-19 research.

Article activity feed

  1. SciScore for 10.1101/2020.07.03.20145581: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    RandomizationThe controls for COVID-19 positive cases were 10,000 random individuals from the 1.5 million DDR patients without a SARS-CoV-2 PCR test that were sex and age group matched to COVID-19 positive individuals (DDR Sample).
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.