Anti-frameshifting ligand active against SARS coronavirus-2 is resistant to natural mutations of the frameshift-stimulatory pseudoknot
This article has been Reviewed by the following groups
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
- Evaluated articles (ScreenIT)
Abstract
The coronavirus SARS-CoV-2 causing the COVID-19 pandemic uses −1 programmed ribosomal frameshifting (−1 PRF) to control the expression levels of key viral proteins. Because modulating −1 PRF can attenuate viral propagation, ligands binding to the viral RNA pseudoknot that stimulates −1 PRF may prove useful as therapeutics. Mutations in the pseudoknot have been observed over the course of the pandemic, but how they affect −1 PRF and the activity of inhibitors is unknown. Cataloguing natural mutations in all parts of the SARS-CoV-2 pseudoknot, we studied a panel of 6 mutations in key structural regions. Most mutations left the −1 PRF efficiency unchanged, even when base-pairing was disrupted, but one led to a remarkable three-fold decrease, suggesting that SARS-CoV-2 propagation may be less sensitive to modulation of −1 PRF efficiency than some other viruses. Examining the effects of one of the few small-molecule ligands known to suppress −1 PRF significantly in SARS-CoV, we found that it did so by similar amounts in all SARS-CoV-2 mutants tested, regardless of the basal −1 PRF efficiency, indicating that the activity of anti-frameshifting ligands can be resistant to natural pseudoknot mutations. These results have important implications for therapeutic strategies targeting SARS-CoV-2 through modulation of −1 PRF.
Article activity feed
-
SciScore for 10.1101/2020.06.29.178707: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar …
SciScore for 10.1101/2020.06.29.178707: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-
