The impact of asymptomatic COVID-19 infections on future pandemic waves
This article has been Reviewed by the following groups
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
- Evaluated articles (ScreenIT)
Abstract
The prevalence of asymptomatic COVID-19 infections is largely unknown and may determine the course of future pandemic waves and the effectiveness of interventions. Using an epidemiological model fit to COVID-19 hospitalization counts from New York City, New York and Austin, Texas, we found that the undocumented attack rate in the first pandemic wave depends on the proportion of asymptomatic infections but not on the infectiousness of such individuals. Based on a recent report that 22.7% of New Yorkers are seropositive for SARS-CoV-2, we estimate that 56% (95% CI: 53-59%) of COVID-19 infections are asymptomatic. Given uncertainty in the case hospitalization rate, however, the asymptomatic proportion could be as low as 20% or as high as 80%. We find that at most 1.26% of the Austin population was infected by April 27, 2020 and conclude that immunity from undetected infections is unlikely to slow future pandemic spread in most US cities in the summer of 2020.
Article activity feed
-
SciScore for 10.1101/2020.06.22.20137489: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar …
SciScore for 10.1101/2020.06.22.20137489: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-
