Epithelial Tissues as Active Solids: From Nonlinear Contraction Pulses to Rupture Resistance

This article has been Reviewed by the following groups

Read the full article

Abstract

Epithelial tissues in many contexts can be viewed as soft active solids. Their active nature is manifested in the ability of individual cells within the tissue to contract and/or remodel their mechanical properties in response to various conditions. Little is known about the emergent properties of such materials. Specifically, how an individual cellular activity gives rise to collective spatiotemporal patterns is not fully understood. Recently we reported the observation of ultrafast contraction pulses in the dorsal epithelium of T . adhaerens in vivo [1] and speculated these propagate via mechanical fields. Other accumulating evidence suggest mechanics is involved in similar contractile patterns in embryonic development in vivo and in cellular monolayers in vitro. Here we show that a widespread cellular response – activation of contraction in response to stretch – is sufficient to give rise to nonlinear propagating contraction pulses. Using a minimal numerical model and theoretical considerations we show how such mechanical pulses emerge and propagate, spontaneously or in response to external stretch. The model – whose mathematical structure resembles that of reaction-diffusion systems – explains observed phenomena in T. adhaerens (e.g. excitable or spontaneous pulses, pulse interaction) and predicts other phenomena (e.g. symmetric strain profile, “spike trains”). Finally, we show that in response to external tension, such an active two-dimensional sheet lowers and dynamically distributes the strains across its surface, hence facilitating tissue resistance to rupture. Adding a cellular softening-threshold further enhances the tissue resistance to rupture at cell-cell junctions. As cohesion is at the heart of epithelial physiology, our model may be relevant to many other epithelial systems, even if manifested at different time/length scales.

Significance

Our work demonstrates that many observed dynamical phenomena in epithelial tissues can be explained merely by mechanical cell-cell interactions, and do not require chemical diffusion or transport between cells (though chemical activity may participate in relevant intracellular processes). Specifically, we show that single cell extension-induced-contraction (EIC) is sufficient to generate propagating contraction pulses, which also increase the tissue’s resistance to rupture, an essential function of epithelia. Our results may shed light on how epithelial tissues function under challenging physiological conditions, e.g. in lung, gut, vasculature and other biomedical contexts. Our results may also be relevant in the study of early evolution of multicellularity and the nervous-muscular systems. Finally, the work offers guidelines for designing soft synthetic solids with improved mechanical properties.

Article activity feed