Persistence of quantal synaptic vesicle recycling following dynamin depletion

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Dynamins are GTPases required for pinching vesicles off the plasma membrane once a critical curvature is reached during endocytosis. Here, we probed dynamin function in central synapses by depleting all three dynamin isoforms in postnatal hippocampal neurons. We found a decrease in the propensity of evoked neurotransmission as well as a reduction in synaptic vesicle numbers. Using the fluorescent reporter vGluT1-pHluorin, we observed that compensatory endocytosis after 20 Hz stimulation was arrested in ~40% of presynaptic boutons, while remaining synapses showed only a modest effect suggesting the existence of a dynamin-independent endocytic pathway in central synapses. Surprisingly, we found that the retrieval of single synaptic vesicles, after either evoked or spontaneous fusion, was largely impervious to disruption of dynamins. Overall, our results suggest that classical dynamin-dependent endocytosis is not essential for retrieval of synaptic vesicle proteins after quantal single synaptic vesicle fusion.

Article activity feed