Metamorphosis of COVID-19 Pandemic

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

We show phase-wise growth of COVID 19 pandemic and explain it by comparing real time data with Discrete Generalized Growth model and Discrete Generalized Richard Model. The comparison of COVID 19 is made for China, Italy, Japan and the USA. The mathematical techniques makes it possible to calculate the rate of exponential growth of active cases, estimates the size of the outbreak, and measures the deviation from the exponential growth indicating slowing down effect. The phase-wise pandemic evolution following the real time data of active cases defines the impact-point when the preventive steps, taken to eradicate the pandemic, becomes effective. The study is important to devise the measures to handle emerging threat of similar COVID-19 outbreaks in other countries, especially in the absence of a medicine.

Article activity feed

  1. SciScore for 10.1101/2020.05.17.20073189: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.