Insights into molecular evolution recombination of pandemic SARS-CoV-2 using Saudi Arabian sequences

This article has been Reviewed by the following groups

Read the full article

Abstract

The recently emerged SARS-CoV-2 ( Coronaviridae; Betacoronavirus ) is the underlying cause of COVID-19 disease. Here we assessed SARS-CoV2 from the Kingdom of Saudi Arabia alongside sequences of SARS-CoV, bat SARS-like CoVs and MERS-CoV, the latter currently detected in this region. Phylogenetic analysis, natural selection investigation and genome recombination analysis were performed. Our analysis showed that all Saudi SARS-CoV-2 sequences are of the same origin and closer proximity to bat SARS-like CoVs, followed by SARS-CoVs, however quite distant to MERS-CoV. Moreover, genome recombination analysis revealed two recombination events between SARS-CoV-2 and bat SARS-like CoVs. This was further assessed by S gene recombination analysis. These recombination events may be relevant to the emergence of this novel virus. Moreover, positive selection pressure was detected between SARS-CoV-2, bat SL-CoV isolates and human SARS-CoV isolates. However, the highest positive selection occurred between SARS-CoV-2 isolates and 2 bat-SL-CoV isolates (Bat-SL-RsSHC014 and Bat-SL-CoVZC45). This further indicates that SARS-CoV-2 isolates were adaptively evolved from bat SARS-like isolates, and that a virus with originating from bats triggered this pandemic. This study thuds sheds further light on the origin of this virus.

AUTHOR SUMMARY

The emergence and subsequent pandemic of SARS-CoV-2 is a unique challenge to countries all over the world, including Saudi Arabia where cases of the related MERS are still being reported. Saudi SARS-CoV-2 sequences were found to be likely of the same or similar origin. In our analysis, SARS-CoV-2 were more closely related to bat SARS-like CoVs rather than to MERS-CoV (which originated in Saudi Arabia) or SARS-CoV, confirming other phylogenetic efforts on this pathogen. Recombination and positive selection analysis further suggest that bat coronaviruses may be at the origin of SARS-CoV-2 sequences. The data shown here give hints on the origin of this virus and may inform efforts on transmissibility, host adaptation and other biological aspects of this virus.

Article activity feed

  1. SciScore for 10.1101/2020.05.13.093971: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    Phylogenetic analysis of whole viral genomes: Whole genome alignments were generated by using ClustalW with opening penalty of 15 and extension penalty of 6.66.
    ClustalW
    suggested: (ClustalW, RRID:SCR_017277)
    Molecular clock analysis: The molecular clock test was performed by comparing the ML value for the given topology obtained in the presence and absence of the molecular clock constraints under Hasegawa-Kishino-Yano model (+G+I) using MEGA X.
    MEGA
    suggested: (Mega BLAST, RRID:SCR_011920)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • No conflict of interest statement was detected. If there are no conflicts, we encourage authors to explicit state so.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.