A Computational Toolset for Rapid Identification of SARS-CoV-2, other Viruses, and Microorganisms from Sequencing Data

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

In this paper, we present a toolset and related resources for rapid identification of viruses and microorganisms from short-read or long-read sequencing data. We present fastv as an ultra-fast tool to detect microbial sequences present in sequencing data, identify target microorganisms, and visualize coverage of microbial genomes. This tool is based on the k-mer mapping and extension method. K-mer sets are generated by UniqueKMER, another tool provided in this toolset. UniqueKMER can generate complete sets of unique k-mers for each genome within a large set of viral or microbial genomes. For convenience, unique k-mers for microorganisms and common viruses that afflict humans have been generated and are provided with the tools. As a lightweight tool, fastv accepts FASTQ data as input, and directly outputs the results in both HTML and JSON formats. Prior to the k-mer analysis, fastv automatically performs adapter trimming, quality pruning, base correction, and other pre-processing to ensure the accuracy of k-mer analysis. Specifically, fastv provides built-in support for rapid SARS-CoV-2 identification and typing. Experimental results showed that fastv achieved 100% sensitivity and 100% specificity for detecting SARS-CoV-2 from sequencing data; and can distinguish SARS-CoV-2 from SARS, MERS, and other coronaviruses. This toolset is available at: https://github.com/OpenGene/fastv .

Article activity feed

  1. SciScore for 10.1101/2020.05.12.092163: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    Although this can be done with a common aligner such as BWA or Bowtie2, these are not ideal for partial mapping of short sequences.
    BWA
    suggested: (BWA, RRID:SCR_010910)
    Bowtie2
    suggested: (Bowtie 2, RRID:SCR_016368)
    The first dataset is the NCBI viral genomes RefSeq database [32], which can be found at https://ftp.ncbi.nlm.nih.gov/refseq/release/viral/.
    RefSeq
    suggested: (RefSeq, RRID:SCR_003496)

    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.