COVID-19: Predictive Mathematical Models for the Number of Deaths in South Korea, Italy, Spain, France, UK, Germany, and USA

This article has been Reviewed by the following groups

Read the full article

Abstract

We have recently introduced two novel mathematical models for characterizing the dynamics of the cumulative number of individuals in a given country reported to be infected with COVID-19. Here we show that these models can also be used for determining the time-evolution of the associated number of deaths. In particular, using data up to around the time that the rate of deaths reaches a maximum, these models provide estimates for the time that a plateau will be reached signifying that the epidemic is approaching its end, as well as for the cumulative number of deaths at that time. The plateau is defined to occur when the rate of deaths is 5% of the maximum rate. Results are presented for South Korea, Italy, Spain, France, UK, Germany, and USA. The number of COVID-19 deaths in other counties can be analyzed similarly.

Article activity feed

  1. SciScore for 10.1101/2020.05.08.20095489: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Experimental Models: Organisms/Strains
    SentencesResources
    For the birational model Letting in equation (5) t → ∞ we find: If b, c, d, k, are close to b1, c1, d1, k1, then Nf is close to c1, and hence the value of α(t) after t=X is close to the value of α(t) before t= X.
    b1
    suggested: None
    c1
    suggested: None
    Software and Algorithms
    SentencesResources
    The constrained variation of the simplex algorithm (23, 24) available in MATLAB® was used for all models; an L1-norm was employed in the likelihood function to improve robustness (25).
    MATLAB®
    suggested: (MATLAB, RRID:SCR_001622)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.