The antimicrobial peptide DGL13K is active against resistant gram-negative bacteria and subinhibitory concentrations stimulate bacterial growth without causing resistance
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (preLights)
Abstract
Antimicrobial peptides may be alternatives to traditional antibiotics with reduced bacterial resistance. The antimicrobial peptide GL13K was derived from the salivary protein BPIFA2. This study determined the relative activity of the L-and D-enantiomers of GL13K to wild-type and drug-resistant strains of three gram-negative species and against Pseudomonas aeruginosa biofilms. DGL13K displayed in vitro activity against ESBL and KPC-producing Klebsiella pneumoniae (MICs 16-32 μg/ml), MDR and XDR P. aeruginosa , and XDR Acinetobacter baumannii carrying metallo-beta-lactamases (MICs 8-32 μg/ml). P. aeruginosa showed low inherent resistance to DGL13K and the increased metabolic activity and growth caused by sub-MIC concentrations of GL13K peptides did not result in acquired bacterial resistance. Daily dosing for approximately two weeks did not increase the MIC of DGL13K or cause cross-resistance between LGL13K and DGL13K. These data suggest that DGL13K is a promising candidate antimicrobial peptide for further development.
Article activity feed
-
Excerpt
Antimicrobial pep talk: salivary protein-derived antimicrobial peptides as alternatives to traditional antibiotics?
-