COVID-19 in Iran: A Deeper Look Into The Future
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
The novel corona-virus (COVID-19) has led to a pandemic, affecting almost all countries and regions in a few weeks, and therefore a global plan is needed to overcome this battle. Iran has been among the first few countries that has been affected severely, after China, which forced the government to put some restriction and enforce social distancing in majority of the country. In less than 2 months, Iran has more than 80,000 confirmed cases, and more than 5,000 death. Based on the official statistics from Iran’s government, the number of daily cases has started to go down recently, but many people believe if the lockdown is lifted without proper social distancing enforcement, there is a possibility for a second wave of COVID-19 cases. In this work, we analyze at the data for the number cases in Iran in the past few weeks, and train a predictive model to estimate the possible future trends for the number of cases in Iran, depending on the government policy in the coming weeks and months. Our analysis may help political leaders and health officials to take proper action toward handling COVID-19 in the coming months.
Article activity feed
-
SciScore for 10.1101/2020.04.24.20078477: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:Similar to other modeling technique, the approach presented here is subject to limitations, which include data quality associated with real-time modeling (as data is often subject to ongoing cleaning, correction, and reclassification of onset dates as further data become available), reporting delays, and problems related to missing data.
R…
SciScore for 10.1101/2020.04.24.20078477: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:Similar to other modeling technique, the approach presented here is subject to limitations, which include data quality associated with real-time modeling (as data is often subject to ongoing cleaning, correction, and reclassification of onset dates as further data become available), reporting delays, and problems related to missing data.
Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-
SciScore for 10.1101/2020.04.24.20078477: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources We used implementation in Keras package in the Python version 3.7.3 [ 27] . Pythonsuggested: (IPython, SCR_001658)Results from OddPub: We did not find a statement about open data. We also did not find a statement about open code. Researchers are encouraged to share open data when possible (see Nature blog).
About SciScore
SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore …
SciScore for 10.1101/2020.04.24.20078477: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources We used implementation in Keras package in the Python version 3.7.3 [ 27] . Pythonsuggested: (IPython, SCR_001658)Results from OddPub: We did not find a statement about open data. We also did not find a statement about open code. Researchers are encouraged to share open data when possible (see Nature blog).
About SciScore
SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore is not a substitute for expert review. SciScore checks for the presence and correctness of RRIDs (research resource identifiers) in the manuscript, and detects sentences that appear to be missing RRIDs. SciScore also checks to make sure that rigor criteria are addressed by authors. It does this by detecting sentences that discuss criteria such as blinding or power analysis. SciScore does not guarantee that the rigor criteria that it detects are appropriate for the particular study. Instead it assists authors, editors, and reviewers by drawing attention to sections of the manuscript that contain or should contain various rigor criteria and key resources. For details on the results shown here, please follow this link.
-