Machine Learning Analysis of Chest CT Scan Images as a Complementary Digital Test of Coronavirus (COVID-19) Patients

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

This paper reports on the development and performance of machine learning schemes for the analysis of Chest CT Scan images of Coronavirus COVID-19 patients and demonstrates significant success in efficiently and automatically testing for COVID-19 infection. In particular, an innovative frequency domain algorithm, to be called FFT-Gabor scheme, will be shown to predict in almost real-time the state of the patient with an average accuracy of 95.37%, sensitivity 95.99% and specificity 94.76%. The FFT-Gabor scheme is adequately informative in that clinicians can visually examine the FFT-Gabor feature to support their final diagnostic.

Key Strengths

The proposed FFT-Gabor scheme is an automatic machine learning scheme that works in real time and achieves significantly high accuracy with very low false negative, and can provide supporting evidences of the predicted decision by visually displaying the final features upon which decision is made. This scheme will be most beneficial when used in addition to the RT-PCR swab test of non-symptomatic cases.

Article activity feed

  1. SciScore for 10.1101/2020.04.13.20063479: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.