deepMINE - Natural Language Processing based Automatic Literature Mining and Research Summarization for Early-Stage Comprehension in Pandemic Situations specifically for COVID-19
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
The recent pandemic created due to Novel Coronavirus (nCOV-2019) from Wuhan, China demanding a large scale of a general health emergency. This demands novel research on the vaccine to fight against this pandemic situation, re-purposing of the existing drugs, phylogenetic analysis to identify the origin and determine the similarity with other known viruses, etc. The very preliminary task from the research community is to analyze the wide verities of existing related research articles, which is very much time-consuming in such situations where each minute counts for saving hundreds of human lives. The entire manual processing is even lower down the efficiency in mining the information. We have developed a complete automatic literature mining system that delivers efficient and fast mining from existing biomedical literature databases. With the help of modern-day deep learning algorithms, our system also delivers a summarization of important research articles that provides ease and fast comprehension of critical research articles. The system is currently scanning nearly 1,46,115,136 English words from 29,315 research articles in not greater than 1.5 seconds with multiple search keywords. Our research article presents the criticality of literature mining, especially in pandemic situations with the implementation and online deployment of the system.
Article activity feed
-
SciScore for 10.1101/2020.03.30.014555: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar …
SciScore for 10.1101/2020.03.30.014555: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- No conflict of interest statement was detected. If there are no conflicts, we encourage authors to explicit state so.
- No funding statement was detected.
- No protocol registration statement was detected.
-