A model to estimate bed demand for COVID-19 related hospitalization

This article has been Reviewed by the following groups

Read the full article

Abstract

As of March 23, 2020 there have been over 354,000 confirmed cases of coronavirus disease 2019 (COVID-19) in over 180 countries, the World Health Organization characterized COVID-19 as a pandemic, and the United States (US) announced a national state of emergency.1, 2, 3 In parts of China and Italy the demand for intensive care (IC) beds was higher than the number of available beds.4, 5 We sought to build an accessible interactive model that could facilitate hospital capacity planning in the presence of significant uncertainty about the proportion of the population that is COVID-19+ and the rate at which COVID-19 is spreading in the population. Our approach was to design a tool with parameters that hospital leaders could adjust to reflect their local data and easily modify to conduct sensitivity analyses.

We developed a model to facilitate hospital planning with estimates of the number of Intensive Care (IC) beds, Acute Care (AC) beds, and ventilators necessary to accommodate patients who require hospitalization for COVID-19 and how these compare to the available resources. Inputs to the model include estimates of the characteristics of the patient population and hospital capacity. We deployed this model as an interactive online tool. 6 The model is implemented in R 3.5, RStudio, RShiny 1.4.0 and Python 3.7. The parameters used may be modified as data become available, for use at other institutions, and to generate sensitivity analyses.

We illustrate the use of the model by estimating the demand generated by COVID-19+ arrivals for a hypothetical acute care medical center. The model calculated that the number of patients requiring an IC bed would equal the number of IC beds on Day 23, the number of patients requiring a ventilator would equal the number of ventilators available on Day 27, and the number of patients requiring an AC bed and coverage by the Medicine Service would equal the capacity of the Medicine service on Day 21.

In response to the COVID-19 epidemic, hospitals must understand their current and future capacity to care for patients with severe illness. While there is significant uncertainty around the parameters used to develop this model, the analysis is based on transparent logic and starts from observed data to provide a robust basis of projections for hospital managers. The model demonstrates the need and provides an approach to address critical questions about staffing patterns for IC and AC, and equipment capacity such as ventilators.

Article activity feed

  1. SciScore for 10.1101/2020.03.24.20042762: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    The main limitation of this model is the fact that most of the inputs are based on estimates. The epidemiology of COVID-19 is critically important, and ongoing research will update the model. The model is very sensitive to specific aspects of the epidemiology, especially doubling time. The model environment can be easily updated with new parameter data to generate a more precise projection.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.