A deterministic epidemic model for the emergence of COVID-19 in China

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Coronavirus disease (COVID-19) broke out in Wuhan, Hubei province, China, in December 2019 and soon after Chinese health authorities took unprecedented prevention and control measures to curb the spreading of the novel coronavirus-related pneumonia. We develop a mathematical model based on daily updates of reported cases to study the evolution of the epidemic. With the model, on 95% confidence level, we estimate the basic reproduction number, R 0 = 2.82 ± 0.11, time between March 19 and March 21 when the effective reproduction number becoming less than one, the epidemic ending after April 2 and the total number of confirmed cases approaching 14408 ± 429 on the Chinese mainland excluding Hubei province.

Article activity feed

  1. SciScore for 10.1101/2020.03.08.20032854: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.