The population attributable fraction of cases due to gatherings and groups with relevance to COVID-19 mitigation strategies

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Many countries have banned groups and gatherings as part of their response to the pandemic caused by the coronavirus, SARS-CoV-2. Although there are outbreak reports involving mass gatherings, the contribution to overall transmission is unknown. We used data from a survey of social contact behaviour that specifically asked about contact with groups to estimate the population attributable fraction (PAF) due to groups as the relative change in the basic reproduction number when groups are prevented. Groups of 50+ individuals accounted for 0.5% of reported contact events, and we estimate that the PAF due to groups of 50+ people is 5.4% (95% confidence interval 1.4%, 11.5%). The PAF due to groups of 20+ people is 18.9% (12.7%, 25.7%) and the PAF due to groups of 10+ is 25.2% (19.4%, 31.4%). Under normal circumstances with pre-COVID-19 contact patterns, large groups of individuals have a relatively small epidemiological impact; small- and medium-sized groups between 10 and 50 people have a larger impact on an epidemic.

This article is part of the theme issue ‘Modelling that shaped the early COVID-19 pandemic response in the UK’.

Article activity feed

  1. SciScore for 10.1101/2020.03.20.20039537: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • No funding statement was detected.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.