Modelling disease transmission from touchscreen user interfaces

This article has been Reviewed by the following groups

Read the full article

Abstract

The extensive use of touchscreens for all manner of human–computer interactions has made them plausible instruments of touch-mediated disease transmission. To that end, we employ stochastic simulations to model human–fomite interaction with a distinct focus on touchscreen interfaces. The timings and frequency of interactions from within a closed population of infectious and susceptible individuals was modelled using a queuing network. A pseudo-reproductive number R was used to compare outcomes under various parameter conditions. We then apply the simulation to a specific real-world scenario; namely that of airport self-check-in and baggage drop. A counterintuitive result was that R decreased with increased touch rates required for touchscreen interaction. Additionally, as one of few parameters to be controlled, the rate of cleaning/disinfecting screens plays an essential role in mitigating R , though alternative technological strategies could prove more effective. The simulation model developed provides a foundation for future advances in more sophisticated fomite disease-transmission modelling.

Article activity feed