COVID-19 pandemic dynamics in India, the SARS-CoV-2 Delta variant and implications for vaccination

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The Delta variant is a major SARS-CoV-2 variant of concern first identified in India. To better understand COVID-19 pandemic dynamics and Delta, we use multiple datasets and model-inference to reconstruct COVID-19 pandemic dynamics in India during March 2020–June 2021. We further use the large discrepancy in one- and two-dose vaccination coverage in India (53% versus 23% by end of October 2021) to examine the impact of vaccination and whether prior non-Delta infection can boost vaccine effectiveness (VE). We estimate that Delta escaped immunity in 34.6% (95% CI: 0–64.2%) of individuals with prior wild-type infection and was 57.0% (95% CI: 37.9–75.6%) more infectious than wild-type SARS-CoV-2. Models assuming higher VE among non-Delta infection recoverees, particularly after the first dose, generated more accurate predictions than those assuming no such increases (best-performing VE setting: 90/95% versus 30/67% baseline for the first/second dose). Counterfactual modelling indicates that high vaccination coverage for first vaccine dose in India combined with the boosting of VE among recoverees averted around 60% of infections during July–mid-October 2021. These findings provide support to prioritizing first-dose vaccination in regions with high underlying infection rates, given continued vaccine shortages and new variant emergence.

Article activity feed

  1. SciScore for 10.1101/2021.06.21.21259268: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.