Analog in-memory computing attention mechanism for fast and energy-efficient large language models

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Transformer networks, driven by self-attention, are central to large language models. In generative transformers, self-attention uses cache memory to store token projections, avoiding recomputation at each time step. However, graphics processing unit (GPU)-stored projections must be loaded into static random-access memory for each new generation step, causing latency and energy bottlenecks. Here we present a custom self-attention in-memory computing architecture based on emerging charge-based memories called gain cells, which can be efficiently written to store new tokens during sequence generation and enable parallel analog dot-product computation required for self-attention. However, the analog gain-cell circuits introduce non-idealities and constraints preventing the direct mapping of pre-trained models. To circumvent this problem, we design an initialization algorithm achieving text-processing performance comparable to GPT-2 without training from scratch. Our architecture reduces attention latency and energy consumption by up to two and four orders of magnitude, respectively, compared with GPUs, marking a substantial step toward ultrafast, low-power generative transformers.

Article activity feed