A comprehensive county level model to identify factors affecting hospital capacity and predict future hospital demand
This article has been Reviewed by the following groups
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
- Evaluated articles (ScreenIT)
Abstract
The sustained COVID-19 case numbers and the associated hospitalizations have placed a substantial burden on health care ecosystem comprising of hospitals, clinics, doctors and nurses. However, as of today, only a small number of studies have examined detailed hospitalization data from a planning perspective. The current study develops a comprehensive framework for understanding the critical factors associated with county level hospitalization and ICU usage rates across the US employing a host of independent variables. Drawing from the recently released Department of Health and Human Services weekly hospitalization data, we study the overall hospitalization and ICU usage—not only COVID-19 hospitalizations. Developing a framework that examines overall hospitalizations and ICU usage can better reflect the plausible hospital system recovery path to pre-COVID level hospitalization trends. The models are subsequently employed to generate predictions for county level hospitalization and ICU usage rates in the future under several COVID-19 transmission scenarios considering the emergence of new COVID-19 variants and vaccination rates. The exercise allows us to identify vulnerable counties and regions under stress with high hospitalization and ICU rates that can be assisted with remedial measures. Further, the model will allow hospitals to understand evolving displaced non-COVID hospital demand.
Article activity feed
-
-
SciScore for 10.1101/2021.02.19.21252117: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:To be sure, the paper is not without limitations. The data on the hospitalization rate are continuously updated for few counties to correct for errors or omission. The models developed were based on the latest versions of the …
SciScore for 10.1101/2021.02.19.21252117: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:To be sure, the paper is not without limitations. The data on the hospitalization rate are continuously updated for few counties to correct for errors or omission. The models developed were based on the latest versions of the data at the time of manuscript preparation. The scenario analysis assumes future mobility to be similar across the scenarios. It is possible that mobility might also be affected as virus transmission rates change. The model is intended to serve as skeletal framework that can be readily updated with newer data on virus transmission and mobility patterns.
Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a protocol registration statement.
-
