Quantitative analysis of particulate matter release during orthodontic procedures: a pilot study

This article has been Reviewed by the following groups

Read the full article

Abstract

No abstract available

Article activity feed

  1. SciScore for 10.1101/2020.09.09.20191270: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    The sampling inlets were located at a fixed position at 7 o’clock and located 8cm away from the maxillary left central incisor (Aerosol Instrument Manager AIM®v10.3.1.0 and NanoScan Manager® v1.0.0.19, TSI Incorporated, Minnesota, USA) with a sampling rate of one minute.
    NanoScan Manager®
    suggested: None

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    A significant limitation of the present study was that the particulate model did not measure viral load generated from these procedures. Dental aerosols are distinct from respiratory aerosols as they produce their own external aerosol with the potential for infectivity residing in the patient’s mucus, nasal and oral secretions. The air and water jets produced by FHPs and SHPs in the oral cavity may become contaminated; the associated microbial concentration and risk of infectivity has not yet been elucidated fully. While quantification of the precise microbial contamination and infectious dose of the particles assessed was not possible, one can estimate the risk based on the known ability of the smaller particles to persist longer in the air and penetrate deeper in the respiratory tract. In general, smaller particles are more likely to be airborne; as such, the risk of airborne spread was considered.26

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.