Is the worst of the COVID-19 global pandemic yet to come? Application of financial mathematics as candidate predictive tools

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The Elliott Wave principle is a time-honored, oft-used method for predicting variations in the financial markets. It is based on the notion that human emotions drive financial decisions. In the fight against the COVID-19 global pandemic, human emotions are similarly decisive, for instance in that they determine one’s willingness to be vaccinated, and/or to follow preventive measures including the personal wearing of masks, the application of social distancing protocols, and frequent handwashing. On this basis, we postulated that the Elliott Wave Principle may similarly be used to predict the future evolution of the COVID-19 pandemic. We demonstrated that this method reproduces the data pattern for various countries and the world (daily new cases). Potential scenarios were then extrapolated, from the best-case corresponding to a rapid, full vaccination of the population, to the utterly disastrous case of slow vaccination, and poor adherence to preventive protocols.

Article activity feed

  1. SciScore for 10.1101/2021.01.21.21250273: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.