Bridging the gaps in test interpretation of SARS-CoV-2 through Bayesian network modelling
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
In the absence of an established gold standard, an understanding of the testing cycle from individual exposure to test outcome report is required to guide the correct interpretation of severe acute respiratory syndrome-coronavirus-2 reverse transcriptase real-time polymerase chain reaction (RT-PCR) results and optimise the testing processes. Bayesian network models have been used within healthcare to bring clarity to complex problems. We use this modelling approach to construct a comprehensive framework for understanding the real-world predictive value of individual RT-PCR results.
We elicited knowledge from domain experts to describe the test process through a facilitated group workshop. A preliminary model was derived based on the elicited knowledge, then subsequently refined, parameterised and validated with a second workshop and one-on-one discussions.
Causal relationships elicited describe the interactions of pre-testing, specimen collection and laboratory procedures and RT-PCR platform factors, and their impact on the presence and quantity of virus and thus the test result and its interpretation. By setting the input variables as ‘evidence’ for a given subject and preliminary parameterisation, four scenarios were simulated to demonstrate potential uses of the model.
The core value of this model is a deep understanding of the total testing cycle, bridging the gap between a person's true infection status and their test outcome. This model can be adapted to different settings, testing modalities and pathogens, adding much needed nuance to the interpretations of results.
Article activity feed
-
-
SciScore for 10.1101/2020.11.30.20241232: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources The model was built in GeNIe (https://www.bayesfusion.com/downloads/). GeNIesuggested: (GENIE, RRID:SCR_009197)Results from OddPub: Thank you for sharing your data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used …
SciScore for 10.1101/2020.11.30.20241232: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources The model was built in GeNIe (https://www.bayesfusion.com/downloads/). GeNIesuggested: (GENIE, RRID:SCR_009197)Results from OddPub: Thank you for sharing your data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on pages 13, 14, 15, 16, 17, 18 and 19. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-