Lessons from the Mainland of China’s Epidemic Experience in the First Phase about the Growth Rules of Infected and Recovered Cases of COVID-19 Worldwide

This article has been Reviewed by the following groups

Read the full article

Abstract

The first phase of the novel coronavirus disease (COVID-19) that emerged at the end of 2019 has been brought under control in the mainland of China in March, while it is still spreading globally. When the pandemic will end is a question of great concern. A logistic model that depicts the growth rules of infected and recovered cases in China’s mainland may shed some light on this question. This model well explained the data by 13 April from 31 countries that have been experiencing serious COVID-2019 outbreaks ( R 2  ≥ 0.95). Based on this model, the semi-saturation period (SSP) of infected cases in those countries ranges from 3 March to 18 June. According to the linear relationship between the growth rules for infected and for recovered cases identified from the Chinese data, we predicted that the SSP of the recovered cases outside China ranges from 22 March to 8 July. More importantly, we found a strong positive correlation between the SSP of infected cases and the timing of a government’s response. Finally, this model was also applied to four regions that went through other coronavirus or Ebola virus epidemics ( R 2  ≥ 0.95). There is a negative correlation between the death rate and the logistic growth rate. These findings provide strong evidence for the effectiveness of rapid epidemic control measures in various countries.

Article activity feed

  1. SciScore for 10.1101/2020.04.16.20067454: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    We processed the data and modeled them with custom scripts on MATLAB (the Math Works).
    MATLAB
    suggested: (MATLAB, RRID:SCR_001622)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.