Toward a more accurate 3D atlas of C. elegans neurons

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background

Determining cell identity in volumetric images of tagged neuronal nuclei is an ongoing challenge in contemporary neuroscience. Frequently, cell identity is determined by aligning and matching tags to an “atlas” of labeled neuronal positions and other identifying characteristics. Previous analyses of such C. elegans  datasets have been hampered by the limited accuracy of such atlases, especially for neurons present in the ventral nerve cord, and also by time-consuming manual elements of the alignment process.

Results

We present a novel automated alignment method for sparse and incomplete point clouds of the sort resulting from typical C. elegans  fluorescence microscopy datasets. This method involves a tunable learning parameter and a kernel that enforces biologically realistic deformation. We also present a pipeline for creating alignment atlases from datasets of the recently developed NeuroPAL transgene. In combination, these advances allow us to label neurons in volumetric images with confidence much higher than previous methods.

Conclusions

We release, to the best of our knowledge, the most complete full-body C. elegans  3D positional neuron atlas, incorporating positional variability derived from at least 7 animals per neuron, for the purposes of cell-type identity prediction for myriad applications (e.g., imaging neuronal activity, gene expression, and cell-fate).

Article activity feed