Predicting CoVID-19 community mortality risk using machine learning and development of an online prognostic tool

This article has been Reviewed by the following groups

Read the full article

Abstract

The recent pandemic of CoVID-19 has emerged as a threat to global health security. There are very few prognostic models on CoVID-19 using machine learning.

Objectives

To predict mortality among confirmed CoVID-19 patients in South Korea using machine learning and deploy the best performing algorithm as an open-source online prediction tool for decision-making.

Materials and Methods

Mortality for confirmed CoVID-19 patients ( n = 3,524) between January 20, 2020 and May 30, 2020 was predicted using five machine learning algorithms (logistic regression, support vector machine, K nearest neighbor, random forest and gradient boosting). The performance of the algorithms was compared, and the best performing algorithm was deployed as an online prediction tool.

Results

The logistic regression algorithm was the best performer in terms of discrimination (area under ROC curve = 0.830), calibration (Matthews Correlation Coefficient = 0.433; Brier Score = 0.036) and. The best performing algorithm (logistic regression) was deployed as the online CoVID-19 Community Mortality Risk Prediction tool named CoCoMoRP ( https://ashis-das.shinyapps.io/CoCoMoRP/ ).

Conclusions

We describe the development and deployment of an open-source machine learning tool to predict mortality risk among CoVID-19 confirmed patients using publicly available surveillance data. This tool can be utilized by potential stakeholders such as health providers and policymakers to triage patients at the community level in addition to other approaches.

Article activity feed

  1. SciScore for 10.1101/2020.04.27.20081794: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    One major limitation of this tool is unavailability of crucial clinical information on symptoms, risk factors and clinical parameters. Recent research has identified certain symptoms, preexisting illnesses and clinical parameters as strong predictors of prognosis and severity of progression for CoVID-19.[20–22] These crucial pieces of information are not publicly available so far in the surveillance data, so the tool could not be tested to include these features. Inclusion of these additional features may improve the reliability and relevance of the tool. Therefore, we urge the users to balance the predictions from this tool against their own and/or health provider’s clinical expertise and other relevant clinical information.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.