Dynamic modelling to identify mitigation strategies for the COVID-19 pandemic

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Relevant pandemic-spread scenario simulations can provide guiding principles for containment and mitigation policies. We devised a compartmental model to predict the effectiveness of different mitigation strategies with a main focus on mass testing. The model consists of a set of simple differential equations considering the population size, reported and unreported infections, reported and unreported recoveries, and the number of COVID-19-inflicted deaths. We assumed that COVID-19 survivors are immune (e.g., mutations are not considered) and that the virus is primarily passed on by asymptomatic and pre-symptomatic individuals. Moreover, the current version of the model does not account for age-dependent differences in the death rates, but considers higher mortality rates due to temporary shortage of intensive care units. The model parameters have been chosen in a plausible range based on information found in the literature, but it is easily adaptable, i.e., these values can be replaced by updated information any time. We compared infection rates, the total number of people getting infected and the number of deaths in different scenarios. Social distancing or mass testing can contain or drastically reduce the infections and the predicted number of deaths when compared with a situation without mitigation. We found that mass testing alone and subsequent isolation of detected cases can be an effective mitigation strategy, alone and in combination with social distancing. It is of high practical relevance that a relationship between testing frequency and the effective reproduction number of the virus can be provided. However, unless one assumes that the virus can be globally defeated by reducing the number of infected persons to zero, testing must be upheld, albeit at reduced intensity, to prevent subsequent waves of infection. The model suggests that testing strategies can be equally effective as social distancing, though at much lower economic costs. We discuss how our mathematical model may help to devise an optimal mix of mitigation strategies against the COVID-19 pandemic. Moreover, we quantify the theoretical limit of contact tracing and by how much the effect of testing is enhanced, if applied to sub-populations with increased exposure risk or prevalence.

Article activity feed

  1. SciScore for 10.1101/2020.11.30.20239566: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    The calculations for mass testing, contact tracing and smart testing were implemented with MATLAB and the Statistics Toolbox Release 2018b.
    MATLAB
    suggested: (MATLAB, RRID:SCR_001622)

    Results from OddPub: Thank you for sharing your code.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.