Metabolic rate measurements of two benthic invertebrates under simulated climate change conditions

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Climate change is profoundly altering marine ecosystems through ocean warming and acidification. These stressors are especially pronounced in the Mediterranean Sea, a climate change hotspot projected to warm faster than the global average. Increased temperatures and reduced pH directly affect metabolic processes in marine invertebrates by elevating respiration rates up to species-specific thermal limits, beyond which physiological performance declines. Ocean acidification further disrupts metabolic processes by increasing energetic maintenance costs. Sessile and sedentary marine invertebrates, such as sponges and benthic gastropods, are particularly exposed to such environmental shifts due to their limited ability to escape unfavorable conditions, making physiological plasticity and local adaptation crucial for persistence.

This manuscript presents a dataset of oxygen consumption rates and wet weight measurements for two low-mobility marine species, the gastropod Hexaplex trunculus and the sponge Chondrilla nucula . Using a common garden experiment, individuals from North and South Aegean populations were exposed for three months to simulated climate change conditions combining increased temperature and reduced pH. The dataset documents respiration measurements obtained using metabolic chambers after three months of exposure, allowing comparisons across species, geographic origin, and experimental treatments.The dataset accounts for intraspecific variation in these responses, providing insight into potential adaptive differences among geographically distinct populations. These data provide a resource for future analyses of metabolic responses of marine invertebrates to combined warming and acidification conditions.

Article activity feed