The active lung microbiota landscape of COVID-19 patients through the metatranscriptome data analysis

This article has been Reviewed by the following groups

Read the full article

Abstract

Introduction: With the outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the interaction between the host and SARS-CoV-2 was widely studied. However, it is unclear whether and how SARS-CoV-2 infection affects lung microflora, which contribute to COVID-19 complications. Methods: Here, we analyzed the metatranscriptomic data of bronchoalveolar lavage fluid (BALF) of 19 COVID-19 patients and 23 healthy controls from 6 independent projects and detailed the active microbiota landscape in both healthy individuals and COVID-19 patients. Results: The infection of SARS-CoV-2 could deeply change the lung microbiota, evidenced by the α-diversity, β-diversity, and species composition analysis based on bacterial microbiota and virome. Pathogens (e.g., Klebsiella oxytoca causing pneumonia as well), immunomodulatory probiotics (e.g., lactic acid bacteria and Faecalibacterium prausnitzii, a butyrate producer), and Tobacco mosaic virus (TMV) were enriched in the COVID-19 group, suggesting a severe microbiota dysbiosis. The significant correlation between Rothia mucilaginosa, TMV, and SARS-CoV-2 revealed drastic inflammatory battles between the host, SARS-CoV-2, and other microbes in the lungs. Notably, TMV only existed in the COVID-19 group, while human respirovirus 3 (HRV 3) only existed in the healthy group. Our study provides insights into the active microbiota in the lungs of COVID-19 patients and would contribute to the understanding of the infection mechanism of SARS-CoV-2 and the treatment of the disease and complications. Conclusion: SARS-COV-2 infection deeply altered the lung microbiota of COVID-19 patients. The enrichment of several other pathogens, immunomodulatory probiotics (lactic acid or butyrate producers), and TMV in the COVID-19 group suggests a complex and active lung microbiota disorder.

Article activity feed

  1. SciScore for 10.1101/2020.08.20.20144014: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    Data collection and preprocessing: The raw metatranscriptomic fastq data of for 42 BALF samples, consist of 19 COVID-19 patients and 23 healthy controls, and two negative controls (NC) were downloaded from Sequence Read Archive, EMBL-EBI ArrayExpress and National Genomics Data Center, China with project IDs, PRJCA002202, PRJNA601736, PRJCA002326, PRJNA605983, PRJNA615032 and PRJNA434133.
    Sequence Read Archive
    suggested: (DDBJ Sequence Read Archive, RRID:SCR_001370)
    ArrayExpress
    suggested: (ArrayExpress, RRID:SCR_002964)
    Briefly, the raw reads underwent removal of host reads (Hg38 reference genome) via STAR (Spliced Transcripts Alignment to a Reference), a series of quality control, consist of removal of low-quality, low-complexity and redundant sequences via Paired-Read Iterative Contig Extension (PRICE), CD-HIT-DUP and Lempel-Ziv-Welch (LZW) compression score, respectively(15).
    STAR
    suggested: (STAR, RRID:SCR_015899)
    Differential species were analyzed by DEseq2 (v1.24.0).
    DEseq2
    suggested: (DESeq2, RRID:SCR_015687)
    Correlation network was visualized by Cytoscape 3.7.2(16).
    Cytoscape
    suggested: (Cytoscape, RRID:SCR_003032)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.