Simulation and Experimental Validation of a 1D Cabin Thermal Model for Electric Trucks with Enhanced Insulation and Heating Panels

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

To reduce emissions in the existing transportation system and lower carbon dioxide (CO2) output, battery electric vehicles (BEVs) offer a promising approach due to their higher energy efficiency. However, their driving range still falls short compared to conventional vehicles. Optimizing the heating, ventilation, and air conditioning (HVAC) system can help save energy and improve passenger comfort. This study investigates an advanced thermal management system for an electric truck cabin with heating panels and added insulation. A one-dimensional (1D) cabin thermal model was also developed and validated with experimental data. The model integrates insulation, heating panels, and a 1D comfort simulation. It is functional mock-up unit (FMU) compatible and connects to larger system simulations and real-time applications. The results show that energy consumption can be reduced by up to 50% with these thermal measures. In the future, further research and new approaches will be necessary to identify even more efficient subsystems and cost-effective solutions.

Article activity feed