Spatiotemporal Evolution, Transition, and Ecological Impacts of Flash and Slowly Evolving Droughts in the Dongjiang River Basin, China

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Based on 0.1° × 0.1° soil moisture reanalysis data from 1950 to 2024, combined with remote sensing ecological products such as Enhanced Vegetation Index (EVI) and gross primary productivity (GPP), this study systematically investigates the spatiotemporal evolution, transition process, and ecological responses of flash droughts and slowly evolving droughts (including seasonal and cross-seasonal droughts) in the Dongjiang River Basin of China. The results indicate the following: (1) The average occurrence frequencies of flash droughts, seasonal droughts, and cross-seasonal droughts within the basin were 4.1%, 7.8%, and 8.4%, respectively. (2) The vast majority of flash droughts (approximately 90.1%) further developed into longer-lasting, slowly evolving droughts, indicating that flash droughts serve as a critical precursor to persistent drought events. Moreover, winter was identified as the key season for the occurrence of flash droughts and their transition to slowly evolving droughts. (3) In terms of ecological response, droughts significantly suppressed vegetation growth, but ecosystem resilience exhibited notable differences: although flash droughts caused relatively mild initial suppression, they were accompanied by a severe lack of ecosystem resilience; in contrast, cross-seasonal droughts, despite inducing stronger suppression, were met with higher ecosystem resilience. This study underscores the importance of the early monitoring and warning of flash droughts, and the findings provide a scientific basis for drought risk management in humid basins.

Article activity feed