Evaluation of ICESat-2 Laser Altimetry for Inland Water Level Monitoring: A Case Study of Canadian Lakes

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This study evaluates the performance of the ICESat-2 ATL13 altimetry product for estimating water levels in 182 Canadian lakes by integrating satellite-derived observations with in situ gauge measurements and applying spatial filtering using the HydroLAKES dataset. The analysis compares ATL13-derived lake surface elevations with hydrometric data from national monitoring stations, providing a robust framework for assessing measurement accuracy. Statistical metrics—including root mean square error (RMSE), mean absolute error (MAE), and mean bias error (MBE)—are employed to quantify discrepancies between the datasets. Importantly, the application of HydroLAKES-based filtering reduces the mean RMSE from 1.53 m to 1.40 m, and the further exclusion of high-error lakes lowers it to 0.96 m. Larger and deeper lakes exhibit lower error margins, while smaller lakes with complex shorelines show greater variability. Regression analysis confirms the excellent agreement between satellite and gauge measurements (R2 = 0.9999; Pearson’s r = 0.9999, n = 182 lakes, p < 0.0001). Temporal trends reveal declining water levels in 134 lakes and increasing levels in 48 lakes from 2018 to 2024, potentially reflecting climatic variability and human influence. These findings highlight the potential utility of ICESat-2 ATL13 altimetry for large-scale inland water monitoring when combined with spatial filtering techniques such as HydroLAKES.

Article activity feed