Evaluating Pretreatment Strategies with Modeling for Reducing Scaling Potential of Reverse Osmosis Concentrate: Insights from Ion Exchange and Activated Alumina
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Reverse osmosis concentrate (ROC) treatment is critical for enhancing water recovery and minimizing concentrate volume for disposal, especially in regions facing water scarcity. This study investigates the application of ion exchange (IX) resins and activated alumina (AA) as pretreatment strategies to mitigate scaling in ROC due to high concentrations of total dissolved solids, hardness (Ca2+ and Mg2+), and silica. Through a series of Langmuir isotherms, continuous column experiments, and model simulation, two types of strong acid cation IX resins and three types of strong base anion IX resins alongside three types of AA were evaluated. Results indicate that AA exhibits superior performance in silica removal, achieving up to a 65% reduction and maintaining performance for up to 800 bed volume without reaching saturation. Model simulation of a secondary reverse osmosis treating ROC after the IX and AA pretreatment indicated an additional water recovery of ~70% using antiscalants. This study demonstrates the potential for achieving higher water recovery while also identifying opportunities for pretreatment improvement. Challenges such as the limited IX capacity treating ROC, which requires frequent regeneration and increases operational costs, along with the restricted regeneration capacity of AA, underscore the importance of innovation. These findings emphasize the critical need for developing advanced materials and optimized strategies to further enhance the efficiency of ROC treatment processes.