The Existence of at Least Three Genomic Signature Patterns and at Least Seven Subtypes of COVID-19 and the End of the Disease

This article has been Reviewed by the following groups

Read the full article

Abstract

Hoping to find genomic clues linked to COVID-19 and end the pandemic has driven scientists’ tremendous efforts to try all kinds of research. Signs of progress have been achieved but are still limited. This paper intends to prove the existence of at least three genomic signature patterns and at least seven subtypes of COVID-19 driven by five critical genes (the smallest subset of genes) using three blood-sampled datasets. These signatures and subtypes provide crucial genomic information in COVID-19 diagnosis (including ICU patients), research focuses, and treatment methods. Unlike existing approaches focused on gene fold-changes and pathways, gene-gene nonlinear and competing interactions are the driving forces in finding the signature patterns and subtypes. Furthermore, the method leads to high accuracy with hospitalized patients, showing biological and mathematical equivalences between COVID-19 status and the signature patterns and a methodological advantage over other methods that cannot lead to high accuracy. As a result, as new biomarkers, the new findings and genomic clues can be much more informative than other findings for interpreting biological mechanisms, developing the second (third) generation of vaccines, antiviral drugs, and treatment methods, and eventually bringing new hopes of an end to the pandemic.

Article activity feed

  1. SciScore for 10.1101/2022.01.24.477579: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    A Matlab ®demo code for solving A in Equation (4) (λ2 = 0) is also available.
    Matlab
    suggested: (MATLAB, RRID:SCR_001622)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.