Topography and Nanomechanics of the Tomato Brown Rugose Fruit Virus Suggest a Fragmentation-Driven Infection Mechanism
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Tomato brown rugose fruit virus (ToBRFV) has been causing severe agricultural damage worldwide since its recent discovery. While related to tobacco mosaic virus, its properties and infection mechanisms are poorly understood. To uncover their structure and nanomechanics, we carried out atomic force microscopy (AFM) measurements on individual ToBRFV particles. The virions are rod-shaped with a height and width of 9 and 30 nm, respectively. Length is widely distributed (5–1000 nm), with a mode at 30 nm. ToBRFV rods displayed a 22.4 nm axial periodicity related to structural units. Force spectroscopy revealed a Young’s modulus of 8.7 MPa, a spring constant of 0.25 N/m, and a rupture force of 1.7 nN. In the force curves a step was seen at a height of 3.3 nm, which is related to virion wall thickness. Wall thickness was also estimated by predicting coat protein structure with AlphaFold, yielding a protein with a length of 7.3 nm. Accordingly, the structural element of ToBRFv is a right circular cylinder with an equal height and diameter of ~22 nm and a wall thickness between 3.3 and 7.3 nm. Thus, at least four to nine serially linked units are required to encapsidate a single, helically organized RNA genome. Fragmentation of ToBRFV into these cylindrical structural units may result in a facilitated release of the genome and thus efficient infection.