Secondary Structure of Subgenomic RNA M of SARS-CoV-2

This article has been Reviewed by the following groups

Read the full article

Abstract

SARS-CoV-2 belongs to the Coronavirinae family. Like other coronaviruses, SARS-CoV-2 is enveloped and possesses a positive-sense, single-stranded RNA genome of ~30 kb. Genomic RNA is used as the template for replication and transcription. During these processes, positive-sense genomic RNA (gRNA) and subgenomic RNAs (sgRNAs) are created. Several studies presented the importance of the genomic RNA secondary structure in SARS-CoV-2 replication. However, the structure of sgRNAs has remained largely unsolved so far. In this study, we probed the sgRNA M model of SARS-CoV-2 in vitro. The presented model molecule includes 5′UTR and a coding sequence of gene M. This is the first experimentally informed secondary structure model of sgRNA M, which presents features likely to be important in sgRNA M function. The knowledge of sgRNA M structure provides insights to better understand virus biology and could be used for designing new therapeutics.

Article activity feed

  1. SciScore for 10.1101/2021.10.11.463917: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    Recombinant DNA
    SentencesResources
    The DNA template was cloned into pUC19 and sequenced using the M13F, M13R for confirmation of proper sequence (Table).
    pUC19
    suggested: RRID:Addgene_50005)
    Software and Algorithms
    SentencesResources
    NMIA reactivities was normalized by QuShape program using model-free statistics to a scale spanning 0 to ∼2, where zero indicates no reactivity and 1.0 is the lowaverage intensity for highly reactive RNA positions [46].
    QuShape
    suggested: None

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on page 23. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.