Real-Time Detection of Meningiomas by Image Segmentation: A Very Deep Transfer Learning Convolutional Neural Network Approach

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background/Objectives: Developing a treatment strategy that effectively prolongs the lives of people with brain tumors requires an accurate diagnosis of the condition. Therefore, improving the preoperative classification of meningiomas is a priority. Machine learning (ML) has made great strides thanks to the development of convolutional neural networks (CNNs) and computer-aided tumor detection systems. The deep convolutional layers automatically extract important and dependable information from the input space, in contrast to more traditional neural network layers. One recent and promising advancement in this field is ML. Still, there is a dearth of studies being carried out in this area. Methods: Therefore, starting with the analysis of magnetic resonance images, we have suggested in this research work a tried-and-tested and methodical strategy for real-time meningioma diagnosis by image segmentation using a very deep transfer learning CNN model or DNN model (VGG-16) with CUDA. Since the VGGNet CNN model has a greater level of accuracy than other deep CNN models like AlexNet, GoogleNet, etc., we have chosen to employ it. The VGG network that we have constructed with very small convolutional filters consists of 13 convolutional layers and 3 fully connected layers. Our VGGNet model takes in an sMRI FLAIR image input. The VGG’s convolutional layers leverage a minimal receptive field, i.e., 3 × 3, the smallest possible size that still captures up/down and left/right. Moreover, there are also 1 × 1 convolution filters acting as a linear transformation of the input. This is followed by a ReLU unit. The convolution stride is fixed at 1 pixel to keep the spatial resolution preserved after convolution. All the hidden layers in our VGG network also use ReLU. A dataset consisting of 264 3D FLAIR sMRI image segments from three different classes (meningioma, tuberculoma, and normal) was employed. The number of epochs in the Sequential Model was set to 10. The Keras layers that we used were Dense, Dropout, Flatten, Batch Normalization, and ReLU. Results: According to the simulation findings, our suggested model successfully classified all of the data in the dataset used, with a 99.0% overall accuracy. The performance metrics of the implemented model and confusion matrix for tumor classification indicate the model’s high accuracy in brain tumor classification. Conclusions: The good outcomes demonstrate the possibility of our suggested method as a useful diagnostic tool, promoting better understanding, a prognostic tool for clinical outcomes, and an efficient brain tumor treatment planning tool. It was demonstrated that several performance metrics we computed using the confusion matrix of the previously used model were very good. Consequently, we think that the approach we have suggested is an important way to identify brain tumors.

Article activity feed