Data-Driven Interactive Lens Control System Based on Dielectric Elastomer
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
In order to solve the dynamic analysis and interactive imaging control problems in the deformation process of bionic soft lenses, dielectric elastomer (DE) actuators are separated from a convex lens, and data-driven eye-controlled motion technology is investigated. According to the DE properties, which are consistent with the deformation characteristics of hydrogel electrodes, the motion and deformation effect of eye-controlled lenses under film prestretching, lens size, and driving voltage, is studied. The results show that when the driving voltage increases to 7.8 kV, the focal length of the lens, whose prestretching λ is 4, and the diameter d is 1 cm, varies in the range of 49.7 mm and 112.5 mm. And the maximum focal-length change could reach 58.9%. In the process of eye controlling design and experimental verification, a high DC voltage supply was programmed, and eye movement signals for controlling the lens were analyzed by MATLAB software (R2023b). Eye-controlled interactive real-time motion and tunable imaging of the lens were realized. The response efficiency of soft lenses could reach over 93%. The adaptive lens system developed in this research has the potential to be applied to medical rehabilitation, exploration, augmented reality (AR), and virtual reality (VR) in the future.