A Hardware-in-the-Loop Simulation Platform for a High-Speed Maglev Positioning and Speed Measurement System

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

In order to solve the testing and verification problems at the early development stage of a high-speed Maglev positioning and speed measurement system (MPSS), a hardware-in-the-loop (HIL) simulation platform is presented, which includes induction loops, transmitting antennas, a power driver unit, a simulator based on a field-programmable gate array (FPGA), a host computer, etc. This HIL simulation platform simulates the operation of a high-speed Maglev train and generates the related loop-induced signals to test the performance of a real ground signal processing unit (GSPU). Furthermore, an absolute position detection method based on Gray-coded loops is proposed to identify which Gray-coded period the train is in. A relative position detection method based on height compensation is also proposed to calculate the exact position of the train in a Gray-coded period. The experimental results show that the positioning error is only 2.58 mm, and the speed error is 6.34 km/h even in the 600 km/h condition. The proposed HIL platform also effectively simulates the three kinds of operation modes of high-speed Maglev trains, which verifies the effectiveness and practicality of the HIL simulation strategy. This provides favorable conditions for the development and early validation of high-speed MPSS.

Article activity feed