Symmetry-Aware SwinUNet with Integrated Attention for Transformer-Based Segmentation of Thyroid Ultrasound Images

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Accurate segmentation of thyroid nodules in ultrasound images remains challenging due to low contrast, speckle noise, and inter-patient variability that disrupt the inherent spatial symmetry of thyroid anatomy. This study proposes a symmetry-aware SwinUNet framework with integrated spatial attention for thyroid nodule segmentation. The hierarchical window-based Swin Transformer encoder preserves spatial symmetry and scale consistency while capturing both global contextual information and fine-grained local features. Attention modules in the decoder emphasize symmetry consistent anatomical regions and asymmetric nodule boundaries, effectively suppressing irrelevant background responses. The proposed method was evaluated on the publicly available TN3K thyroid ultrasound dataset. Experimental results demonstrate strong performance, achieving a Dice Similarity Coefficient of 85.51%, precision of 87.05%, recall of 89.13%, an IoU of 78.00%, accuracy of 97.02%, and an AUC of 99.02%. Compared with the baseline model, the proposed approach improves the IoU and Dice score by 15.38% and 12.05%, respectively, confirming its ability to capture symmetry-preserving nodule morphology and boundary asymmetry. These findings indicate that the proposed symmetry-aware SwinUNet provides a robust and clinically promising solution for thyroid ultrasound image analysis and computer-aided diagnosis.

Article activity feed